
Microservices and DevOps

DevOps and Container Technology
REST Architectural Style

Henrik Bærbak Christensen

REST: The Fast Version

Assuming you already know REST ☺

Architectural Style

• As a software architect, I see REST as an

– Architectural style / pattern

• It is a specific programming model

– Functional programming:

• Computation is passing data through chains of functions

– Object programming:

• Computation is community of objects passing messages

– RPC over Client-Server:

• Computation is clients invoking procedures on remote servers

– REST

• Computation is clients manipulating resources using CRUD ops and

moving through states using hypermedia links

CS@AU Henrik Bærbak Christensen 3

The Basics: Client-Server

• Well defined roles of components and connectors…

CS@AU Henrik Bærbak Christensen 4

Server

Client
Client

Client
Client

Client

Reactive

Active

Ala: web browsing, facebook, …

The Basic: WWW

• Tim Berners-Lee approx. 1989 - 1990

– Task: Sharing research documents at CERN

• Solution:

– Hypertext protocol over TCP/IP

for retrieving documents

• Actually very simple

text based format

CS@AU Henrik Bærbak Christensen 5

 pplication

 ransport

 nternet

 in
 t ernet protocol

 model

The Basis: HTTP

• HTTP = Hyper Text Transfer Protocol

– Application Protocol for Distributed Information Systems

• Exchanging information between clients and server

• Has four parts

– Verbs: GET, POST, PUT, DELETE

• Corresponds to normal database CRUD operations

– Standardized data formats

• Media types: text/html, image/gif, application/json

– Message format in text

• Verb + Headers (key/value) + empty line + body

– Standard Error Code Vocabulary

• 200 K, 404 N F N , 201 R , …

CS@AU Henrik Bærbak Christensen 6

Message Format

• Request line

– Verb resource HTTP version

– Header key-values

• Reply line

– Status line

• HTTP codes

– Header fields

– Message body

CS@AU Henrik Bærbak Christensen 7

Text format !

Roy Fielding’s work

• Goal: Keep the scalable hypermedia properties of WWW

• REST = REpresentational State Transfer

– Transferring a representation of data in a format matching one of

standard data types (media types)

– Resource: any information that can be named

– Identified by a resource identifier

• URI = Uniform Resource Identifier

– Interactions are stateless

• Each request contains all the information necessary

CS@AU Henrik Bærbak Christensen 8

Exercise: Why is everybody so keen on ‘stateless’? What QA is involved?

Resource Identifier: URI

• URI: Uniform Resource Identifier

• URL = URI in which resource location and means are

defined

– http://www.baerbak.com/contact.html

– http://localhost:4567/bin

CS@AU Henrik Bærbak Christensen 9

Exercise:
Identify the parts of the URI

http://www.baerbak.com/contact.html

CRUD by REST

• I can now design an Information System using the REST

style. xample ‘a clipboard web server

– POST on /pastebin/ with a message body

• = CREATE a new clip (resource) on the clipboard, assign resource

ID

– GET on /pastebin/100

• = READ the stored clip in the provided resource ID

– PUT on /pastebin/100 with a complete new message body

• = UPDATE the contents of the resource

– DELETE on /pastebin/100

• = you get it ☺

CS@AU Henrik Bærbak Christensen 10

Demo

• S ‘Fis and

‘Hest’ in bins

• Assigned bin

100, 101

• GET bin 101

• W ic is ‘Hest’

• GET bin 117

• Which is not

found (404)

CS@AU Henrik Bærbak Christensen 11

HATEOAS

• One drawback of REST compared to other programming

models

– In oo/procedural/functional you can define methods that do

complex algoritms over multiple objects ”resources”

• Not just: create, read, update, delete

• Solution: Hyper Text As The Engine Of Application State

– Any resource contains not just its state but also links that may

modify state of related resources

– Read FRS §7. HATEOAS is beyond our MSDO scope…

CS@AU Henrik Bærbak Christensen 12

Define the API

• FRDS §7.7 presents a rough template for API definition

• Example

• Will be used

in MSDO

• Or use swagger

or …

CS@AU Henrik Bærbak Christensen 13

The Slow Version

HTTP & ReST

• e Bro er pattern ad its glory in t e early 1990’ies as a

paradigm for distributed communication

• However, the WWW sort of happened in the same period.

• And soon it was realized that HTTP could do much more

t an just provide web pages…

CS@AU Henrik Bærbak Christensen 15

HTTP

WWW

• Tim Berners-Lee approx. 1989 - 1990

– Task: Sharing research documents at CERN

• Solution:

– Hypertext protocol over TCP/IP

for retrieving documents

• Actually very simple

text based format

CS@AU Henrik Bærbak Christensen 17

 pplication

 ransport

 nternet

 in
 t ernet protocol

 model

Just a Note

• Web, world wide web, HTML, HTTP may seem like one

big jumble but they are distinct concepts though they

were developed in parallel. They have different roles to

play.

– HTML: Hypertext Markup Language is a dataformat, useful for

visual formatting of text document containing images and

references (hyperlinks) to ther documents.

– HTTP: Hypertext Transfer Protocol is an application protocol for

distributed information systems.

– WWW: The system made that used HTML+HTTP to share

documents at CERN, and later – quite a few other places ☺

AU CS Henrik Bærbak Christensen 18

Message Format

• Request line

– Verb resource HTTP version

– Header key-values

• Reply line

– Status line

• HTTP codes

– Header fields

– Message body

CS@AU Henrik Bærbak Christensen 19

Text format !

Write your Own Web Client

• Exercise in class:

– Write a web client

AU CS Henrik Bærbak Christensen 20

URI / URL

• URI: Uniform Resource Identifier

• URL = URI in which resource location and means are

defined

– http://www.baerbak.com/contact.html

– http://localhost:4567/bin

CS@AU Henrik Bærbak Christensen 21

Exercise:
Identify the parts of the URI

http://www.baerbak.com/contact.html

HTTP Verbs

• Http version 1.1. defines 4 verbs (o , some more…)

• … w ic are basically t e database verbs

– CRUD Create, Read, Update, Delete

• These form the core of the REST architectural style…

CS@AU Henrik Bærbak Christensen 22

GET

• G is t e ‘first and original verb’, and t e one most

traffic uses on WWW

– Browing web pages

– Or even make searches on the web server

• GET is idempotent

– Call once or 100 times, the output is the same

– It is an ‘accessor’ / ‘query’ method!

AU CS Henrik Bærbak Christensen 23

POST

• S means ‘create’

– That is, create new resources/information on the server

– It is a ‘mutator’/’command’ method

• onsider ‘telemed.processAndStore(obs);’

– Command pattern: Convert method call to an object

• Now, consider that ‘telemed is on the server side

– POST allows us to create a command object

• POST /telemed HTTP/1.1

• Body { met od: ‘processAndStore’, argument: {‘sys’:140, …} }

AU CS Henrik Bærbak Christensen 24

PUT, DELETE

• means ‘update’

– That is, given an existing resource, overwrite its information with

updated information (*)

– Mutator ☺

• means ‘delete’ ☺

– That is, remove an existing resource from the server

• (*) unless you only provide a partial ressource, t en you s ould update using S instead (w ic M does not ma e sense, but…)

AU CS Henrik Bærbak Christensen 25

Failures in Distribution

• A lot of things can and will go wrong in distributed

systems

– The server has crashed

– The network has crashed

– Server does not understand what you talk about

– You do not have the proper authorization

• We normally use exceptions to signal failures

• But – does not work over networks

• The old way: Error codes

AU CS Henrik Bærbak Christensen 26

HTTP Status Codes

• Well defined vocabulary of error codes! See Wikipedia

CS@AU Henrik Bærbak Christensen 27

Media Types

• The requestor and the replier need to agree on the

dataformat that data is exchanged in

– Media types, defined by IANA

• Internet Assigned Number Authority

• Well known types

– text/html: HTML formatted text

– image/gif: Image in the GIF format

– application/xml: XML format

– application/json: JSON format

AU CS Henrik Bærbak Christensen 28

I want HTML, please

REpresentation State Transfer

What is REST

• As a software architect, I see it as an

– Architectural style / pattern

• It is simply quite another programming model

– Functional programming:

• Computation is passing data through chains of functions

– Object programming:

• Computation is community of objects passing messages

– RPC over Client-Server:

• Computation is clients invoking procedures on remote servers

– REST

• Computation is clients manipulating resources using CRUD ops and

moving through states using hypermedia links

CS@AU Henrik Bærbak Christensen 30

Programming Model

• Broker pattern

– Supports RPC/RMI between clients and servers

• State changes through accessors and mutator methods

• Any interface is possible

• REST

– Supports only CRUD on remote resources (=Data objects)

– Supports workflow through hypermedia links

• Very different programming model required

compared to RPC

• Not all architectures are suited for REST !
CS@AU Henrik Bærbak Christensen 31

Roy Fielding’s work

• Goal: Keep the scalable hypermedia properties of WWW

• REST = REpresentational State Transfer

– Transferring a representation of data in a format matching one of

standard data types (media types)

– Resource: any information that can be named

– Identified by a resource identifier

• URI = Uniform Resource Identifier

– Interactions are stateless

• Each request contains all the information necessary

CS@AU Henrik Bærbak Christensen 32

Exercise: Why is everybody so keen on ‘stateless’? What QA is involved?

Representing Resources

Using TeleMed as case

Example

• Resource: nger’s blood pressure measured on

29/6/2017

• Representation of data using standard media type:

– { pid: ”251248-12 4”, sys: 120.0, dia:70.0 } (json)

• Resource identifier

– http://telemed.org/bp/251248-1234/made-29-06-2017-09-59-17

– .e. nger’s resource (er blood pressure measurement) is

uniquely identified using this URI

CS@AU Henrik Bærbak Christensen 34

Example: CRUD

• Inger makes the measurement CREATE

• POST /bp

– Body: { pid: ”251248-12 4”, sys: 120.0, dia:70.0 }

• Response

– StatusCode: 201 CREATED

– Location: /bp/251248-1234/made-29-06-2017-09-59-17

– Body: { pid: ”251248-12 4”, sys: 120.0, dia:70.0, status: ”new” }

• Meaning

– The resources was created, has resource id

• /bp/251248-1234/made-29-06-2017-09-59-17

CS@AU Henrik Bærbak Christensen 35

Example: CRUD

• Inger reviews the measurement READ

• GET /bp/251248-1234/made-29-06-2017-09-59-17

– Body: (none)

• Response

– StatusCode: 200 OK

– Body: { pid: ”251248-12 4”, sys: 120.0, dia:70.0, status=”new” }

• Meaning

– The resources was found, and the measurement returned

CS@AU Henrik Bærbak Christensen 36

Example: CRUD

• Inger updates the measurement UPDATE

• PUT /bp/251248-1234/made-29-06-2017-09-59-17

– Body: { pid: ”251248-12 4”, sys: 126.0, dia:69.0 }

• Response

– StatusCode: 201 CREATED

– Body: { pid: ”251248-12 4”, sys: 126.0, dia:69.0, status=”revised” }

• Meaning

– The resources was found, and the measurement updated

CS@AU Henrik Bærbak Christensen 37

Example: CRUD

• Inger deletes the measurement DELETE

• DELETE /bp/251248-1234/made-29-06-2017-09-59-17

– Body: (none)

• Response

– StatusCode: 204 No Content

– Body: none

• Meaning

– The resources was found, and the measurement deleted

CS@AU Henrik Bærbak Christensen 38

Prototype: pastebin

• R S is pretty lig tweig t programming wise…

– Goal: to demonstrate ”pastebin”

• nline service for storing text messages = ‘post-its’

– Total time: 1.5 hour (well – a bit cheating)

• Developed

– Webserver, accepting POST and GET

• Using Spark-java framework (IPC) and GSON (Marshaling)

– Client: curl or httpie ☺

CS@AU Henrik Bærbak Christensen 39

Demo

• S ‘Fis ’,

‘Hest’ and

‘Elefant’ in bins

• Assigned bin

100, 101, 102

• GET bin 101

• W ic is ‘Hest’

• GET bin 117

• Which is not

found (404)

CS@AU Henrik Bærbak Christensen 40

Or use ‘httpie’:
http POST localhost:4567/bin contents=Fisk

Note

• POST of course needs to tell client the resource identifier

of the newly created object!

– Reponse contains ‘ ocation’ field

CS@AU Henrik Bærbak Christensen 41

Server code

• A PasteBin server in 50 lines of Java
– OK, Spark-java helps quite a bit!

CS@AU Henrik Bærbak Christensen 42

Is in the ‘FRDS.Broker’
codebase.

Left as an Exercise

• We should be able to update a text in pastebin

– PUT verb

• And delete an entry

– DELETE verb

CS@AU Henrik Bærbak Christensen 43

Discussion

• REST uses the HTTP as designed

– CRUD verbs and Status Codes (methods, return type)

• Virtually allows all Information Systems operations !

– URLs as resource identifiers (location+object)

• Always identify the same resource, and representation of state is

always communicated

– Well defined data representations (media types)

• JSON has become favorite (readable + small footprint)

CS@AU Henrik Bærbak Christensen 44

Richardson’s Maturity model

• From low maturity to high maturity

– URI Tunnel

• Just use HTTP as IPC layer

– SOAP, WSDL, WebServices

– And our URI Tunnel Broker!

– HTTP

• Use CRUD Verbs on resources

– Hypermedia

• Use links to define workflows

CS@AU Henrik Bærbak Christensen 45

URI Tunnel

HTTP

Hypermedia

Level 2 REST

Workflow

• Business systems can often be modelled as workflows

– CS term: State machines / state graphs ☺

• Ex:Book a flight

– I search for flights available get list of links

– I pick one particular flight get ‘boo ’ lin

– I book the flight enter personal details

– I pay for the flight enter credit card details

– I get a) e-ticket b) receipt get two links

CS@AU Henrik Bærbak Christensen 47

Exercise

• I search for flights

– What HTTP verb is that? What resources are involved?

• I book the flight

– What HTTP verb is that? What resources are involved?

• I pay for the flight

– What HTTP verb is that? What resources are involved?

• I get my e-ticket

– What HTTP verb is that? What resources are involved?

CS@AU Henrik Bærbak Christensen 48

Level 2: Hypermedia

• Wor flows are not just ‘ R a resource’, rat er more

complex

– Transactions: Multiple entities atomically updated

– State transitions: Mutator methods

that updates several entities and/or

updates state

– x: game’s move(f,t) method

• Validate move (may return ‘not valid’)

• Update board state

(transaction, e.g. king castling)

CS@AU Henrik Bærbak Christensen 49

Analysis

• ‘move()’ using verbs ???

• Analysis A:

– ”No can do”

• Because ‘move’ is not a create, it is not a read, nor update, nor

delete of a single resource (stateless)

CS@AU Henrik Bærbak Christensen 50

Analysis

• ‘move()’ using verbs

• Analysis B: Maybe it is an update of game

– PUT /game/47

– Body: Full board state with the move executed

• But – then the server has to infer the move from the delta between

state ‘before’ and state ‘after’ which is weird!

– And it is definitely not stateless – right?

CS@AU Henrik Bærbak Christensen 51

Analysis

• Analysis C: A ‘state transition resource’

– Creating a game, is creation of two resources

• The game resource /game/47/

• The move resource /game/47/move or /game/move/47

– PUT /game/47/move

– Body: { from: e2, to: e4, player:white}

• This will

– Try to UPDATE the state => 200 OK or 401 Invalid

– If 200 OK, then the game resource is updated

• And can be successively GET to see new board state

CS@AU Henrik Bærbak Christensen 52

Challenge

• But how do we return two resources from the game

create POST message?

– We can not, but we can use the WWW way – provide hypermedia

links!!!

boardState: [...],

CS@AU Henrik Bærbak Christensen 53

Aka

• HATEOAS:

– Hypermedia As The Engine Of Application State.

• Application state changes are modelled as hypermedia

links, each to a resource that objectify the change itself,

not the old/new state of underlying objects

– ‘move’ resource, a ‘payment’ resource, a ‘send items to

address’ resource, etc.

CS@AU Henrik Bærbak Christensen 54

Often visible in UI

• The state changes of the order

CS@AU Henrik Bærbak Christensen 55

Level 2: Hypermedia

• So – REST is a radically different

architectural pattern/style, different from

OO and interface-based paradigms

• POST to create a resource

– May return several hypermedia links that

define valid state transitions for the

resource

• Which are then manipulated through the

HTTP verbs

– Makes potential state transitions

discoverable

• Just like any new web page presents links

that I may follow

CS@AU Henrik Bærbak Christensen 56

URI Tunnel

HTTP

Hypermedia

REST versus Broker

Comparing Apples and Bananas?

Programming Model

• Broker: invoke methods on objects

• REST: CRUD methods on resources

• Comparing to Broker

– REST actually addresses

responsibilities on both the

Marshalling, Location, and

IPC level.

– REST has much lower cohesion

and tighter binding!

CS@AU Henrik Bærbak Christensen 58

Programming Model

• Broker is well supported by tooling

– Java RMI, .Net remoting, …

• REST is (IMO – or am I missing something) more up to

you to code it all

– Swagger a.o. can provide templating

• REST is much tighter coupled to the HTTP platform

– But it is a strong scaleable one, so …

CS@AU Henrik Bærbak Christensen 59

Example

• Requirement

– Rewrite t e ‘cmd-daemon’ protocol to use RabbitMQ message

broker

• Using FRDS.Broker

– A task that takes about 1-2 hours

• Using the RPC tutorial of RabbitMQ

• Using REST

– Rewrite everything from scratch

CS@AU Henrik Bærbak Christensen 60

Summary

• UR Tunnelling
– Just uses HTTP and web technology/frameworks as the IPC layer in the Broker

• That is : transport network packages to/from client and server

• REST

– Architectural Pattern what deeply exploits HTTPs advantages

– Lightweight with less tool support

– Focus is on performance and scalability because

• True Client-server No callback/observer pattern

• Value passing of information

CS@AU Henrik Bærbak Christensen 61

Summary

• Broker pattern and REST?

• REST and OO are two different architectural styles…

CS@AU Henrik Bærbak Christensen 62

