/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
REST Architectural Style

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

REST: The Fast Version

Assuming you already know REST ©

/v Architectural Style

AARHUS UNIVERSITET

* As a software architect, | see REST as an
— Architectural style / pattern
 Itis a specific programming model
— Functional programming:
« Computation is passing data through chains of functions
— Object programming:
« Computation is community of objects passing messages
— RPC over Client-Server:
« Computation is clients invoking procedures on remote servers

— REST

« Computation is clients manipulating resources using CRUD ops and
moving through states using hypermedia links

/v The Basics: Client-Server

AARHUS UNIVERSITET

* Well defined roles of components and connectors...
Reactive

Client-server architecture Two components need to communicate,
and they are independent of each other, even running in different
processes or being distributed in different machines. The two com-
ponents are not equal peers communicating with each other, but
one of them is initiating the communication, asking for a service
that the other provides. Furthermore, multiple components might
request the same service provided by a single component. Thus, the

component providing a service must be able to cope with numerous
requests at any time, i.e. the component must scale well. On the
other hand, the requesting components using one and the same
service might deal differently with the results. This asymmetry
between the components should be reflected in the architecture for
the optimization of quality attributes such as performance, shared
use of resources, and memory consumption.

Active

The CLIENT-SERVER pattern distinguishes two kinds of compo-
nents: clients and servers. The client requests information or ser-
vices from a server. To do so it needs to know how to access the
server, that is, it requires an ID or an address of the server and of
course the server’s interface. The server responds to the requests
of the client, and processes each client request on its own. It does
not know about the ID or address of the client before the interaction

Client

takes place. Clients are optimized for their application task, whereas

servers are optimized for serving multiple clients3. Ala: web browsing, facebook, ...

3Paris Avgeriou and Uwe Zdun, “Architectural patterns revisited - a pattern language”, In 10th European ngen) 4
Conference on Pattern Languages of Programs (EuroPlop), Irsee, 2005.

ot The Basic: WWW

AARHUS UNIVERSITET

 Tim Berners-Lee approx. 1989 - 1990
— Task: Sharing research documents at CERN

e Solution: P TCP/IP - model
— Hypertext protocol over TCP/IP - g Application
for retrieving documents cr® P T - Transport
= > Internet
* ACtua”y Very Slmple Ethernet protocol ~ Link

text based format

VeV The Basis: HTTP

AARHUS UNIVERSITET

« HTTP = Hyper Text Transfer Protocol

— Application Protocol for Distributed Information Systems
« Exchanging information between clients and server

« Has four parts

— Verbs: GET, POST, PUT, DELETE

« Corresponds to normal database CRUD operations
— Standardized data formats

« Media types: text/html, image/qif, application/json
— Message format in text

» Verb + Headers (key/value) + empty line + body
— Standard Error Code Vocabulary

« 200 OK, 404 NOT FOUND, 201 CREATED, ...

/v

AARHUS UNIVERSITET

* Request line
— Verb resource
— Header key-values

* Reply line
— Status line
e HTTP codes

— Header fields
— Message body

CS@AU

Message Format

Text format !

HTTP version

GET /contact.html HTTP/1.1
Host: www.baerbak.com

Accept: text/html

HTTP/1.1 200 OK
Date: Mon, 19 Jun 2017 09:58:25 GMT

Server: Apache/2.2.17 (FreeBSD) mod_ssl1/2.2.17 OpenSSL/1.0.0c ...

Last-Modified: Mon, 13 Apr 2015 12:34:07 GMT
ETag: "b46bce-676-513%a547e2dcO"
Accept-Ranges: bytes

Content-Length: 1654

Vary: Accept-Encoding,User—-Agent
Content-Type: text/html

<html>
<head>
<title>Flexible, Reliable Software</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<link href="style.css" rel="stylezsheet" type="text/css">

Henrik Baerbak Christensen

/v Roy Fielding’s work

AARHUS UNIVERSITET
« Goal: Keep the scalable hypermedia properties of WWW
« REST = REpresentational State Transfer

— Transferring a“in a format matching one of
types (media types

standard data

— ldentified by a resource identifier
« URI = Uniform Resource Identifier

« Each request contains all the information necessary

Exercise: Why is everybody so keen on ‘stateless’? What QA is involved?

CS@AU Henrik Baerbak Christensen 8

eV Resource ldentifier: URI

AARHUS UNIVERSITET
« URI: Uniform Resource Identifier

scheme: [//[user[:password]@lhost[:port]] [/path] [?query] [#fragment]

scheme: [//host[:port]] [/path]

« URL = URI In which resource location and means are

defined
Exercise:
Identify the parts of the URI

— http://www.baerbak.com/contact.html
CS@AU Henrik Baerbak Christensen 9

— http://localhost:4567/bin

http://www.baerbak.com/contact.html

/v CRUD by REST

AARHUS UNIVERSITET

« | can now design an Information System using the REST
style. Example ‘a clipboard web server

— POST on /pastebin/ with a message body

« = CREATE a new clip (resource) on the clipboard, assign resource
ID

— GET on /pastebin/100
« = READ the stored clip in the provided resource ID

— PUT on /pastebin/100 with a complete new message body
= UPDATE the contents of the resource

— DELETE on /pastebin/100
« =yougetit©

| csdevia T~

m csdevia
/ v csdev@ml:~% http POST localhost:4567/bin contents=Fisk
AARHUS UNIVER

csdev@ml:~% http POST localhost:4567/bin contents=Hest

csdev@ml:~$ http localhost:4567/bin/101

csdev@ml:~% http localhost:4567/big/117

CS@AU

Demo

POST ‘Fisk and
‘Hest’ in bins

Assigned bin
100, 101

GET bhin 101
Which is ‘Hest’

GET bin 117

Which is not
found (404)

11

VeV HATEOAS

AARHUS UNIVERSITET
* One drawback of REST compared to other programming

models

— In oo/procedural/functional you can define methods that do
complex algoritms over multiple objects/"resources”

» Not just: create, read, update, delete

« Solution: Hyper Text As The Engine Of Application State

— Any resource contains not just its state but also links that may
modify state of related resources

— Read FRS §7. HATEOAS is beyond our MSDO scope...

/v

AARHUS UNIVERSITET

Define the API

« FRDS §7.7 presents a rough template for API definition

 Example

 Will be used
In MSDO

* Or use swagger
or ...

CS@AU

GET quote header

GET /msdo/vl/quotes
(none)

Response
Status: 200 0K

"authors": [
"Albert Einstein”,
"Sgren Kierkegaard",

>
"published": "2819-86-28T89:35:19.1337",
"title": "MSDO Quote Service",
"totalItems": 57,
"url™: "http://moja.st.client.au.dk:6777/msdo/v1/quotes™
b

GET individual quote

GET /msdo/vl/quotes/{quoteIndex}

Response
Status: 200 0K

"author": "Albert Einstein",
"number™: 1,
"quote™: "Logic will get you from A to B. Imagination will take you everywhere."
Status: 404 NOT FOUND
Status: 400 BAD REQUEST
484 is returned in case the quotelIndex is out of range. 488 is

returned in case the quoteIndex is not well formed (not integer).
First valid quoteIndex is 1. 13

/v

AARHUS UNIVERSITET

The Slow Version

VeV HTTP & ReST

AARHUS UNIVERSITET

« The Broker pattern had its glory in the early 1990’ies as a
paradigm for distributed communication

 However, the WWW sort of happened in the same period.

« And soon it was realized that HTTP could do much more
than just provide web pages...

/v

AARHUS UNIVERSITET

HTTP

/v

AARHUS UNIVERSITET

 Tim Berners-Lee approx. 1989 - 1990
— Task: Sharing research documents at CERN

« Solution: e poPs
— Hypertext protocol over TCP/IP Jop
for retrieving documents TCP
IP
i ACtua”y Very Slmple Ethernet protocol

text based format

WWW

TCP/IP - model

Application

Transport

Internet

Link

/v Just a Note

AARHUS UNIVERSITET

 Web, world wide web, HTML, HTTP may seem like one
big jJumble but they are distinct concepts though they
were developed in parallel. They have different roles to
play.
— HTML: Hypertext Markup Language is a dataformat, useful for

visual formatting of text document containing images and
references (hyperlinks) to ther documents.

— HTTP: Hypertext Transfer Protocol is an application protocol for
distributed information systems.

— WWW: The system made that used HTML+HTTP to share
documents at CERN, and later — quite a few other places ©

/v Message Format

AARHUS UNIVERSITET

* Request line Text format !
— Verb resource HTTP version
— Header key-values

GET /contact.html HTTP/1.1
Host: www.baerbak.com

Accept: text/html

HTTP/1.1 200 OK
19 Jun 2017 08:58:25 GMT

° R I I' Date: Mon,
ep y Ine Server: Apache/2.2.17 (FreeBSD) mod_ssl1/2.2.17 OpenSSL/1.0.0c ...

Last-Modified: Mon, 13 Apr 2015 12:34:07 GMT

H ETag: "b46bce-676-513%a547e2dcO"
- Status |Ine Accept-Ranges: bytes
Content-Length: 1654

° HTTP COdeS Vary: Accept-Encoding, User—-Agent

Content-Type: text/html

— Header fields

<head>

Messa e bOd <title>Flexible, Reliable Software</title>
g;)/ <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<link href="style.css" rel="stylezsheet" type="text/css">

CS@AU Henrik Baerbak Christensen 19

- Write your Own Web Client

AARHUS UNIVERSITET
 Exercise In class:

import java.net.*;

. . public class EchoClient {
—_ erte a Web Cllent public static void main(String[] args) throws IOException {

if (args.length != 2} {
system.err.println(
"Usage: java EchoClient <host name: <port number:");
System.exit(l);

}

String hostName = args[@];
int porthumber = Integer.parseInt(args[1]);

try (

acket echoSocket = new Socket(hostName, portNumber);
GET /contact.html HTTP/1.1 Prineuriter ot = | ocxes(osuene, porumher

new PrintWriter(echoSocket.getOutputStream(), true);
- BufferedReader in =
Host: www.baerbak.com et cdnender(
P,L t t_ t_ /‘ ht l new InputStreamReader(echoSocket.getInputStream()));
- BufferedReader stdIn =
= Cep * ex m new BufferedReader(
new InputStreamReader(System.in))

String userInput;

while ({userInput = stdIn.readLine(}) != null) {
out.println(userInput);
System.out.println("echo:

+ in.readline()};

}

} catch (UnknownHostException e) {
System.err.println("Don't know about host
System.exit(1l);

} catch (IOException e) {
System.err.println("Couldn't get I/0 for the connection to " +

hosthame) ;
System.exit(1l);

+ hostName);

AU CS Henrik Baerbak Christensen 20

/v URI/ URL

AARHUS UNIVERSITET
« URI: Uniform Resource Identifier

scheme: [//[user[:password]@lhost[:port]] [/path] [?query] [#fragment]

scheme: [//host[:port]] [/path]

« URL = URI In which resource location and means are

defined
Exercise:
Identify the parts of the URI

— http://www.baerbak.com/contact.html
CS@AU Henrik Baerbak Christensen 21

— http://localhost:4567/bin

http://www.baerbak.com/contact.html

o HTTP Verbs

AARHUS UNIVERSITET
« Http version 1.1. defines 4 verbs (ok, some more...)
e GET: request representation of a resource (URI)
e POST: accept enclosed entity as new subordinate of resource (URI)

e PUT: request enclosed entity to be stored under URI

DELETE: request deletion of resource (URI)

* ... which are basically the database verbs
— CRUD Create, Read, Update, Delete

 These form the core of the REST architectural style...

CS@AU Henrik Baerbak Christensen 22

VeV GET

AARHUS UNIVERSITET

« GET is the “first and original verb’, and the one most
traffic uses on WWW
— Browing web pages

GET /contact.html HTTP/1.1
Host: www.baerbak.com
Accept: text/html

— Or even make searches on the web server
scheme: [//[user[:password]@]host[:port]] [/path] [?query] [#fragment]

« GET is idempotent \

— Call once or 100 times, the output is the same
— Itis an ‘accessor’/ ‘query’ method!

AU CS Henrik Baerbak Christensen 23

Y o POST

AARHUS UNIVERSITET

« POST means ‘create’
— That is, create new resources/information on the server
— It is a ‘mutator’’’command’ method

« Consider ‘telemed.processAndStore(obs);’
— Command pattern: Convert method call to an object

 Now, consider that telemed is on the server side

— POST allows us to create a command object
« POST /telemed HTTP/1.1
« Body { method: ‘processAndStore’, argument: {'sys’:140, ...} }

ot PUT, DELETE

AARHUS UNIVERSITET

« PUT means ‘update’

— That is, given an existing resource, overwrite its information with
updated information (*)

— Mutator ©

« DELETE means ‘delete’ ©

— That is, remove an existing resource from the server

(*) unless you only provide a partial ressource, then you should update using POST instead (which IMO does not make sense, but...)

/v Failures in Distribution

AARHUS UNIVERSITET

« Alot of things can and will go wrong in distributed
systems
— The server has crashed
— The network has crashed
— Server does not understand what you talk about
— You do not have the proper authorization

« We normally use exceptions to signal failures
« But — does not work over networks ®

« The old way: Error codes

A HTTP Status Codes

AARHUS UNIVERSITET
« Well defined vocabulary of error codes! See Wikipedia

2XX Success |[edi]

: o ! 5XX Server errors | edi]
This class of status codes indicates the action reque

4xX Client errors |ei] The server failed to fulfill a request [58]

200 OK . . o |
This class of status code is intended for situations in which the error seems o hi Response status codes beginning with the digit "5” indicate cases in which the server is aware th;

Standard response for successful HTTP requesl Except when responding to a HEAD request, the server should include an entity of performing the request. Except when responding to a HEAD request, the server should include
contain an entity corresponding to the requestec error situation, and whether it is a temporary or permanent condition. These stal sityation, and indicate whether it is a temporary or permanent condition. Likewise, user agents s

of the action €l request method. User agents should display any included entity to the user®" response codes are applicable to any request metnod 159
201 Created 400 Bad Request 500 Internal Server Error
The request has been fulfilled, resulting in the ci The server cannot or will not process the request due to an apparent client€ A generic error message. given when an unexpected condition was encountered and no more
202 Accepted syntax, size too large, invalid request message framing, or deceplive reques! 501 Not Implemented
401 Unauthorized (RFC 7235c) The server either does not recognize the request method, or it lacks the ability to fulfil the rec

The request has been accepted for processing,
upon, and may be disallowed when processing ¢
203 Non-Authoritative Information (since HTTP/

Similar to 403 Forbidden, but specifically for use when authentication is requ feature of a web-service API) B1]
been provided. The response must include a WWW-Authenticate header fiel 502 Bad Gateway
applicable to the requested resource. See Basic access authentication and [The server was acting as a gateway or proxy and received an invalid response from the upstn

The server is a transforming proxy (e.g. a Web ¢ "unauthenticated” [*¥ i e. the user does not have the necessary credentials. 503 Service Unavailable

response.mmz] MNote: Some sites issue HTTP 401 when an |P address is banned from the we The server is currently unavailable (because it is overloaded or down for mainienance). Gene
204 No Content permission fo access a website. 504 Gateway Timeout

The server successfully processed the request & 402 Payment Required The server was acting as a gateway or proxy and did not receive a timely response from the U

Reserved for future use. The original intention was that this code might be u: 505 HTTP Version Not Supported
proposed for example by GNU Talerl*%], but that has not yet happened, and t The server does not support the HTTP protocol version used in the request [58]
particular developer has exceeded the daily limit on requests [*®l Siripe API& 506 Variant Also Negotiates (RFC 2295)

205 Reset Content

The server successfully processed the request,
reset the document view [4]

403 Forbidden Transparent content negotiation for the request results in a circular reference 7]
206 Partial Content (RFC 7233) The request was valid, but the server is refusing action. The user might not t 507 Insufficient Storage (WebDAV; RFC 4318)
The server is delivering only part of the resource of some sort. The server is unable to store the representation needed to complete the request.[18]
to enable resuming of interrupted downloads, or 404 Not Found I
207 Multi-Status (WebDAV; RFC 4918:) The requested resource could not be found but may be available in the future. Subsequent reques

Tha maceana hady that fallae ic an YL _meacces 405 Method Not Allowed
A request method is not supported for the requested resource; for example, a GET request on a fg
or a PUT request on a read-only resource.

CS@AU Henrik Baerbak Christensen 27

/v Media Types

AARHUS UNIVERSITET

« The requestor and the replier need to agree on the
dataformat that data is exchanged in
— Media types, defined by IANA
 Internet Assigned Number Authority
« Well known types
— text/html: HTML formatted text
— image/gif: Image in the GIF format
GET /contact.html HTTP/1.1
— application/xml: XML format Host: www.baerbak.com
]] . Accept: text/html
— application/json: JSON format /

pRp—

AU CS Henrik Baerbak Christensen 28

/v

AARHUS UNIVERSITET

REpresentation State Transfer

VeV What is REST

AARHUS UNIVERSITET

 As a software architect, | see it as an
— Architectural style / pattern

« Itis simply quite another programming model
— Functional programming:
« Computation is passing data through chains of functions
— Object programming:
« Computation is community of objects passing messages
— RPC over Client-Server:
« Computation is clients invoking procedures on remote servers
— REST

« Computation is clients manipulating resources using CRUD ops and
moving through states using hypermedia links

/v Programming Model

AARHUS UNIVERSITET

« Broker pattern

— Supports RPC/RMI between clients and servers
« State changes through accessors and mutator methods
« Any interface is possible

* REST

— Supports only CRUD on remote resources (=Data objects)
— Supports workflow through hypermedia links

CS@AU Henrik Beerbak Christensen 31

/v Roy Fielding’s work

AARHUS UNIVERSITET
« Goal: Keep the scalable hypermedia properties of WWW
« REST = REpresentational State Transfer

— Transferring a“in a format matching one of
types (media types

standard data

— ldentified by a resource identifier
« URI = Uniform Resource Identifier

« Each request contains all the information necessary

Exercise: Why is everybody so keen on ‘stateless’? What QA is involved?

CS@AU Henrik Baerbak Christensen 32

/v

AARHUS UNIVERSITET

Representing Resources

Using TeleMed as case

Y Example

AARHUS UNIVERSITET

 Resource: Inger’s blood pressure measured on
29/6/2017

* Representation of data using standard media type:
— { pid: "251248-1234", sys: 120.0, dia:70.0 } (ison)

* Resource identifier
— http://telemed.org/bp/251248-1234/made-29-06-2017-09-59-17

— l.e. Inger’s resource (her blood pressure measurement) is
uniquely identified using this URI

CS@AU Henrik Baerbak Christensen 34

/v Example: CRUD

AARHUS UNIVERSITET
* Inger makes the measurement CREATE
« POST /bp
— Body: { pid: "251248-1234", sys: 120.0, dia:70.0 }
 Response

— StatusCode: 201 CREATED
— Location: /bp/251248-1234/made-29-06-2017-09-59-17
— Body: { pid: "251248-1234", sys: 120.0, dia:70.0, status: "new” }

 Meaning
— The resources was created, has resource id
» /bp/251248-1234/made-29-06-2017-09-59-17

CS@AU Henrik Baerbak Christensen 35

/v Example: CRUD

AARHUS UNIVERSITET
* Inger reviews the measurement READ
 GET /bp/251248-1234/made-29-06-2017-09-59-17

— Body: (none)
 Response

— StatusCode: 200 OK
— Body: { pid: "251248-1234", sys: 120.0, dia:70.0, status="new” }

 Meaning
— The resources was found, and the measurement returned

CS@AU Henrik Baerbak Christensen 36

/v Example: CRUD

AARHUS UNIVERSITET
* Inger updates the measurement UPDATE
 PUT /bp/251248-1234/made-29-06-2017-09-59-17

— Body: { pid: "251248-1234", sys: 126.0, dia:69.0 }

 Response
— StatusCode: 201 CREATED
— Body: { pid: "251248-1234", sys: 126.0, dia:69.0, status="revised” }

 Meaning
— The resources was found, and the measurement updated

CS@AU Henrik Baerbak Christensen 37

/v Example: CRUD

AARHUS UNIVERSITET
* Inger deletes the measurement DELETE
« DELETE /bp/251248-1234/made-29-06-2017-09-59-17
— Body: (none)
 Response

— StatusCode: 204 No Content
— Body: none

 Meaning
— The resources was found, and the measurement deleted

CS@AU Henrik Baerbak Christensen 38

VeV Prototype: pastebin

AARHUS UNIVERSITET
« REST is pretty lightweight programming wise...

— Goal: AP to demonstrate "pastebin”
* Online service for storing text messages = ‘post-its’

— Total time: 1.5 hour (well — a bit cheating)

« Developed

— Webserver, accepting POST and GET
» Using Spark-java framework (IPC) and GSON (Marshaling)

— Client: curl or httpie ©

ab [
saip@SaipDev:~/dev/saip-f16-lab/restbin$ curl -i -X POST -d '{"contents":"Fisk"}' localhnst:4567/bhin .)
HTTP/1.1 281 Created
Bate: Tue, 10 May 2016 06:34:22 GMT
Location: localhost:4567/bin/168
Content-Type: application/json
Transfer-Encoding: chunked DO
Server: Jetty(9.3.2.v201508730)

{"contents":"Fisk"}saip@saipDev:~/dev/saip-f1l6-lab/restbing > sigle
salp@SaipDev:~/dev/saip-f1l6-lab/restbin$ curl -i -X POST -d '{"contents":"Hest"}' localhost:4567/bin
HTTP/1.1 281 Created U

Date: Tue, 10 May 2016 06:35:11 GMT

Location: localhost:4567/bin/101 A gned p
Content-Type: application/]son

Transfer-Encoding: chunked 00 (
Server: Jetty(9.3.2.v20150730)

{"contents":"Hest"}saip@SaipDev:~/dev/saip-fl6-lab/restbin$ curl -i -X POST -d '{"contents":"Hest"}' localhost:

curl -i -X POST -d '{"contents":"Elefant"}' localhost:4567/bin

HTTP/1.1 201 Created J
Date: Tue, 10 May 2816 86:35:34 GMT

Location: localhost:4567/bin/162

Content-Type: application/json

Transfer-Encoding: chunked

Server: Jetty(9.3.2.v20158730)

{"contents":"Elefant"}saip@SaipDev:~/dev/saip-f16-lab/restbin$ curl -i -X POST -d '{"contents":"Elefant"}' loca 9
Fisk567/bin

saip@SaipDev:~/dev/saip-fl6-lab/restbin$ gcurl _-i localbost-4s67/bins10]

HTTP/1.1 200 OK

Date: Tue, 10 May 2016 06:35:58 GMT 0 d (404
Content-Type: application/json

Transfer-Encoding: chunked

Server: Jetty(9.3.2.v201508730)

"contents"”:"Hest"}saip@saipDev:~/dev/saip-f16-lab/restbing curl -i 10calh05t:456?fbin§11?

Date: Tue, 10 May 2016 06:36:02 GMT
Content-Type: application/json
Transfer-Encoding: chunked

Server: Jetty(9.3.2.v28158730)

nullsaip@saipDev:~/dev/saip-f16-lab/restbing] i

eV Note

AARHUS UNIVERSITET

« POST of course needs to tell client the resource identifier
of the newly created object!
— Reponse contains ‘Location’ field

E saip@SaipDev: ~/dev/saip-F16-lab/restbin - + X

File Edit Tabs Help
saip@saipDev:~/dev/saip-f16-lab/restbin$ curl -i -X POST -d '{"contents":"Fisk"}' localhost:4567/bin
HTTP/1.1 281 Created
e: Tue, 1@ May 2016 06:34:22 GMT
Location: localhost:4567/bin/168
Content-Type: application/json

Transfer-Encoding: chunked
Server: Jetty(9.3.2.v20150730)

{"contents":"Fisk"}saip@saipDev:~/dev/saip-fl6-lab/restbing

CS@AU Henrik Baerbak Christensen 41

public Server() {
J,-f;-e;e
POST /bin. Create a new bkin, if success, receive a Location
* gpecifying the bin's resource identifier.

* Parameter: red.body must be J5CN such as {"contents™:
"Suzy's telephone no is 1234"})
*f
post ("/kEin", (req, res) -> {
// Conwvert from JSOM into object format
Bin g = gson.fromdson(req.body(), Bin.class);

/{ Create a new resource ID
String idasString = ""+id++s

// Store bin in the database
db.put (idAsString, q):

S/ 201 Created
res.status (HttpServletResponse.5C CREATED) ;

/{ Location = URL of created resource
res.header ("Location”, req.host()+"/bin/"+idasString):

// Return the constructed bin
return g
Yr Jsonmi()):

J.-’xx
* GET /bin/<id>». Get the bin with the given id
xf

get (" bin/:id", (req, res) -> {
J/ Extract the bin id from the reguest
String id = req.params|(":1d");

// Lookup, and return if found
Bin bin = db.get (id):;
if (bin '= mull) { return bin; }

/{ Otherwise, return error
res.status (HeepServletResponse . 5C_NOT_FOUND) ;

return null;
}, dsoni()):

£/ Set all response types to JS0N
after((reqg, res) -> {

res.type ("application/j=son™) ;
)i

Server code

A PasteBin server in 50 lines of Java

OK, Spark-java helps quite a bit!

Is in the ‘FRDS.Broker’

codebase.

®rbak Christensen 42

eV Left as an Exercise

AARHUS UNIVERSITET

* We should be able to update a text in pastebin
— PUT verb

 And delete an entry
— DELETE verb

eV Discussion

AARHUS UNIVERSITET

« REST usesthe HTTP as designed

— CRUD verbs and Status Codes (methods, return type)
 Virtually allows all Information Systems operations !

— URLSs as resource identifiers (location+object)

« Always identify the same resource, and representation of state is
always communicated

— Well defined data representations (media types)
« JSON has become favorite (readable + small footprint)

/v Richardson’s Maturity model

AARHUS UNIVERSITET

* From low maturity to high maturity

— URI Tunnel

« Justuse HTTP as IPC layer
— SOAP, WSDL, WebServices .
— And our URI Tunnel Broker! Hypermedia
— HTTP

 Use CRUD Verbs on resources

URI Tunnel

— Hypermedia
* Use links to define workflows

CS@AU Henrik Beerbak Christensen 45

/v

AARHUS UNIVERSITET

Level 2 REST

/v

AARHUS UNIVERSITET

« Business systems can often be modelled as workflows
— CS term: State machines / state graphs ©

 Ex:Book a flight

— | search for flights available

| pick one particular flight
| book the flight

| pay for the flight

| get a) e-ticket b) receipt

Workflow

get list of links

get ‘book’ link

enter personal details
enter credit card details
get two links

eV Exercise

AARHUS UNIVERSITET

» | search for flights
— What HTTP verb is that? What resources are involved?

* | book the flight

— What HTTP verb is that? What resources are involved?

« | pay for the flight

— What HTTP verb is that? What resources are involved?
* | get my e-ticket

— What HTTP verb is that? What resources are involved?

/v Level 2: Hypermedia

AARHUS UNIVERSITET
« Workflows are not just ‘CRUD a resource’, rather more
complex
— Transactions: Multiple entities atomically updated
— itions: Mutator meth
tShte;attt ?J trczlalarlltselslose?/eraLII Sn?itiesean?llgr LIRS A
P 4 S P Y SF Y O
updates state 6
)
— Ex: A game’s move(f,t) method 4 B _
« Validate move (may return ‘not valid’) .
« Update board state QN TATEY TANPRY RPN
(transaction, e.g. king castling) 1 % Z? % ‘%ﬁ % % Z? %

xxxxxxxxxxxxxxxxx

CS@AU Henrik Baerbak Christensen 49

Y Analysis

AARHUS UNIVERSITET
* ‘move() using HTTP verbs 7?7

* Analysis A:
— "No can do”

« Because ‘move’ is not a create, it is not a read, nor update, nor
delete of a single resource (stateless)

CS@AU Henrik Baerbak Christensen 50

/v Analysis

AARHUS UNIVERSITET
* ‘move() using HTTP verbs

« Analysis B: Maybe it Is an update of game
— PUT /game/47

— Body: Full board state with the move executed

 But — then the server has to infer the move from the delta between
state ‘before’ and state ‘after’ which is weird!

— And it is definitely not stateless — right?

/v Analysis

AARHUS UNIVERSITET

* Analysis C: A ‘state transition resource’
— Creating a game, is creation of two resources

 The game resource /game/47/
« The move resource /game/47/move or /[game/move/47
— PUT /game/47/move
— Body: { from: e2, to: e4, player:white}
* This will

— Try to UPDATE the state => 200 OK or 401 Invalid

— If 200 OK, then the game resource is updated
« And can be successively GET to see new board state

/v

AARHUS UNIVERSITET

Challenge

« But how do we return two resources from the game
create POST message?

— We can not, but we can use the WWW way — provide hypermedia
links!!

playerOne: Pedersen,

playerTwo: Findus,

boardState: [...],

playerInTurn: Pedersen

I next: /lobby/game/move/{game-id} I

CS@AU Henrik Baerbak Christensen 53

/v Aka

AARHUS UNIVERSITET

« HATEOAS:
— Hypermedia As The Engine Of Application State.

« Application state changes are modelled as hypermedia
links, each to a resource that objectify the change itself,
not the old/new state of underlying objects

— A ‘move’ resource, a ‘payment’ resource, a ‘send items to
address’ resource, etc.

VeV Often visible in Ul

AARHUS UNIVERSITET
« The state changes of the order

(Tibage Fakturaadresse

1. 2. Fakturaadresse

Fakturaadresse Aktuel kurv Rediger
Tlfnr. * Email * 1x MX Master 2S Wireless Mouse,
Graphite (910-005139)
Lager 648,01
Firmanavn* Gentag email *

Fri fragt med GLS

o ran

CS@AU Henrik Baerbak Christensen 55

/v Level 2: Hypermedia

AARHUS UNIVERSITET

« S0 — REST is a radically different
architectural pattern/style, different from
OO and interface-based paradigms

e POST to create a resource

define valid state transitions for the

— May return several hypermedia links that /\

resource

* Which are then manipulated through the
HTTP verbs

Hypermedia

— Makes potential state transitions
discoverable

« Just like any new web page presents links URI Tunnel
that | may follow

CS@AU Henrik Beerbak Christensen 56

/v

AARHUS UNIVERSITET

REST versus Broker

Comparing Apples and Bananas?

/v Programming Model

AARHUS UNIVERSITET
 Broker: invoke methods on objects
« REST: CRUD methods on resources

«interface» _
Role .

Server side
method(a,b,c)

« Comparing to Broker

— REST actually addresses
responsibilities on both the
Marshalling, Location, and
IPC level.

— REST has much lower cohesion
and tighter binding!

Servant

ClientProxy

method(a,b,c)

method(a,b,c)

,,/»""/Demarshalls and
dispatchs call

\[/ marshalls call

Requestor Marshflling Invoker

request(location, objectid,
operationld, arguments)

handleRequest(objectid,
operationld, byte[])

receives on network

+| sends on network

ClientRequestHandler ServerRequestHandler

send(address, byte[])

‘ byte[] receive()

; 4 ’

\ IPC IPC I/
Library Library

CS@AU Henrik Baerbak Christensen 58

Y Programming Model

AARHUS UNIVERSITET

» Broker is well supported by tooling
— Java RMI, .Net remoting, ...

« REST is (IMO — or am | missing something) more up to
you to code it all
— Swagger a.o. can provide templating

 REST Is much tighter coupled to the HTTP platform
— But it is a strong scaleable one, so ...

/v Example

AARHUS UNIVERSITET

* Reqguirement

— Rewrite the ‘cmd-daemon’ protocol to use RabbitMQ message
broker

« Using FRDS.Broker

— Atask that takes about 1-2 hours
» Using the RPC tutorial of RabbitMQ

« Using REST
— Rewrite everything from scratch

Y Summary

AARHUS UNIVERSITET
* UR Tunnelling

— Just uses HTTP and web technology/frameworks as the IPC layer in the Broker
* Thatis : transport network packages to/from client and server

* REST

— Architectural Pattern what deeply exploits HTTPs advantages
— Lightweight with less tool support

— Focus is on performance and scalability because
« True Client-server No callback/observer pattern
« Value passing of information

Y Summary

AARHUS UNIVERSITET
* Broker pattern and REST?

CS@AU Henrik Beerbak Christensen 62

